Sizing Guide for Air and Electric Powered Vibrators for Hoppers, Bins and Chutes

I. Air Vibrator Selection

A single vibrator will normally provide the necessary force to move materials from most hoppers and bins. The single vibrator installation requires that the force of vibration be transmitted to full 180° right and left of the vibrator mounting location. However, due to the special configurations of some hoppers, their construction or wall thickness or the characteristics of the material itself (sticky, lightweight, large particles, moisture, etc.), consideration should be given to the use of multiple smaller vibrators that are evenly arranged around the hopper in place of one large vibrator.

The maximum number of multiples is three vibrators mounted 120° apart, or two vibrators mounted 180° apart. Greater distribution of vibration will result and assurance that all areas will be vibrated equally. This arrangement is of particular importance when attempting to move material from long rectangular shaped hoppers or from hoppers with a very shallow taper at the discharge.

AIR VIBRATOR SIZING CHART FOR BINS AND HOPPERS

Bin Capacity	Approximate Skin	Impact Vibrator	Non-Impact Vibrator	
Ibs/kg or ton/MT	Thickness of Bin in/mm	Size	Size	
100 lbs	1/8" or less	VM-25	CVT-P-1	
45 kg	3.2 mm	VIII-23		
200 lbs	1/8" or less	VM-38	CVT-P-10	
90 kg	3.2 mm	VIII-30	0014-10	
300 lbs	1/8" or less		CVT-P-30 or CVT-P-22	
136 kg	3.2 mm		0714-30010714-22	
500 lbs	1/8"		CVT-P-30, CVT-P-22 or	
226 kg	3.2 mm		1125	
700 lbs	1/8"	1125	CVT-P-50, CVT-P-30 or	
317 kg	3.2 mm	1125	1150	
1 ton	1/8"-3/16"	1150	CVT-P-60, CVT-P-40 or	
0.9 MT	3.2 mm-4.8 mm	1150	1200	
3 ton	3/16"-1/4"	1200	CVT-80 or 1300	
2.7 MT	4.8 mm-6.4 mm	1200	011-00 01 1500	
20 ton	5/16"-3/8"	1300	1350	
18 MT	7.9 mm-9.5 mm	1500		
50 ton	3/8"	1350	1400	
45 MT	9.5 mm	1330	1400	
100 ton	3/8"	1400	1500	
90 MT	9.5 mm-12.7 mm	1400	1500	
100 ton and up	3/4"-1"	1500	1700	
90 MT and up	19.1 mm-25.4 mm	1300		

A. Installation

The mounting of a vibrator on a length of channel which is stitch welded vertically to the side of a hopper will provide a transmission line above and below the vibrator and will also reinforce the hopper wall as well. The width of the channel should be to suit the base dimensions of the vibrator. The length will also vary with the hopper size, however, a good rule to follow is that the channel be one-third the length of the sloping section of the hopper.

B. Moisture Content

Moisture content of the material to be moved is also important in the sizing of a vibrator. If the moisture content is 6% or more, it is advisable to use the next size vibrator or two vibrators.

C. Force Output Adjustment

All vibrators provide a range of adjustability in their force output. Air vibrators can be adjusted with a simpler air regulator; electric vibrators with adjustable eccentrics; or others with SCR controls. In selecting a vibrator, remember that it can be adjusted due to changes in material make-up, lower hopper contents, or vibrator over sizing.

D. Non-Impact Adjustments

There is a reduction in vibration intensity in the nonimpacting type vibrators (air-cushioned piston, rotary electric, turbine and ball) over the impacting piston vibrator. For piston vibrators, to achieve comparable results, the next size non-impacting vibrator should be used.

E. Operation Effectiveness

A short burst of vibration is normally more effective than continuous vibration. Do not operate vibrators against closed hopper gates or valves.

F. Noise Levels

Noise level of vibrators varies with the type. A general ranking from loudest to quietest is a follows: impact, ball, air-cushioned, rotary electric and turbine.

Air Piston Vibrators • Turbine Vibrators • Rotary Electric Vibrators Ball Vibrators • Electromagnetic Vibrators • Vibratory Tables Vibratory Feeders • Vibratory Screeners • Vibratory Conveyors Tailored On Demand

2828 Clinton Avenue • Cleveland, Ohio 44113 216-241-7157 • 800-221-3298 • Fax 216-241-3480 • www.clevelandvibrator.com

II. Rotary Electric Selection

The sizing of rotary electric vibrators is based on the ratio of material weight in the sloped wall section to the force output of the vibrator. For the majority of applications, the ratio should be one pound of vibratory force for every ten pounds of material in the sloped wall section of the hopper.

The 3600 RPM rotary electric vibrator units are used for the majority of applications and are well suited for materials which are in the "free flowing" to "difficult to flow" range. For particularly stubborn materials, the 1800 RPM units will provide greater amplitude than a 3600 RPM unit of the same force output. When selecting an 1800 RPM rotary electric vibrator, use the chart to determine the proper size 3600 RPM vibrator, then select the 1800 RPM unit which develops the same force output.

To determine the weight of material in the sloped wall section, multiply the bulk density of the product by the volume (in cubic feet) of the hopper section.

To calculate the volume of a conical hopper: 1.0472 **x** vertical height $x[R_2 + (R x r) + r_2] =$ Volume, where R is the radius of the cone at the transition point and r is the radius of the cone at the discharge.

To calculate the volume of a rectangular or square hopper:

Vertical height/ $3x(B + (B \times b)) = volume where B is the area at the transition point and b is the area at the discharge.$

Most bin or hopper applications will require only one RE rotary electric vibrator. Cleveland Vibrator Company recommends mounting the single drive, locating the unit at a point on the sloped wall section that is 1/3 the height of the wall.

Applications involved with particularly stubborn material or hoppers larger than 100 ton capacity may require two or more vibrators. The recommended mounting is shown in figures 2 and 3. Normally, not more than three rotary electric vibrators would ever be required on a hopper or bin.

ROTARY	ELECTRIC SIZING CHART
FOR	BINS AND HOPPERS

Maximum Material	Cleveland Vibrator	Normal Wall
in Sloped Wall Section	Company Model	Thickness
1,100 lbs	RE 0.5-2	16 to 20 gauge
498 kg		1.31 to 0.52 mm ²
2,200 lbs	DE 1-2	1/8 to 3/16"
997 kg	INE 1-2	3.17 to 4.76 mm
4,400 lbs	DE 2-2	3/16 to 1/4"
1995 kg	NE 2-2	4.76 to 6.35 mm
7,700 lbs	PE 25.2	3/16 to 1/4"
3,492 kg	NE 3.3-2	4.76 to 6.35 mm
13,200 lbs	PE 6.2	1/4 to 3/8"
5,987 kg	NE 0-2	6.35 to 9.52 mm
22,000 lbs	PE 10-2	3/8 to 1/2"
9,979 kg	IXE 10-2	9.52 to 12.7 mm
35,200 lbs	RE 16-2	1/2 to 3/4"
15,966 kg	IXE 10-2	12.7 to 19 mm
50,600 lbs	RE 23-2	3/4 to 1"
22,951 kg	NE 23-2	19 to 25.4 mm
66,000 lbs	RE 30-2	1 to1-1/4"
29,937 kg	NE 30-2	25.4 to 31.7 mm
88,000 lbs	RE 40-2	1-1/4 to 1-1/2"
39,916 kg	112 40-2	31.7 to 38 mm

The information contained in the charts in this sizing guide is the result of decades of field experience. It is a reasonably accurate approach to giving you quick information to vibrator sizing on a hopper, bin or chute. Recommended vibrator sizes are predicated on a dry granular material weighing 100 lbs. per cubic ft. Considerations to other characteristics are mentioned previously. For additional information, visit <u>www.clevelandvibrator.com</u>.